skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harrison, Jacob S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract When terrestrial organisms locomote in natural settings, they must navigate complex surfaces that vary in incline angles and substrate roughness. Variable surface structures are common in arboreal environments and can be challenging to traverse. This study examines the walking gait of katydids (Tettigoniidae) as they traverse a custom-built platform with varying incline angles (30○, 45○, 60○, 75○, 90○) and substrate roughness (40, 120, and 320 grit sandpaper). Our results show that katydids walk more slowly as the incline angle increases and as katydid mass increases, with a decrease of around 0.3 body lengths per second for every 1○ increase in incline. At steeper inclines and larger sizes, katydids are also less likely to use an alternating tripod gait, opting instead to maintain more limbs in contact with the substrate during walking. Katydids also increased average duty factor when climbing steeper inclines and with increasing body mass. However, substrate roughness did not affect walking speed or gait preference in our trials. These findings provide insights into how environmental factors influence locomotor strategies in katydids and enhance our understanding of effective locomotor strategies in hexapods. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. ABSTRACT Organisms such as jumping froghopper insects and punching mantis shrimp use spring-based propulsion to achieve fast motion. Studies of elastic mechanisms have primarily focused on fully developed and functional mechanisms in adult organisms. However, the ontogeny and development of these mechanisms can provide important insights into the lower size limits of spring-based propulsion, the ecological or behavioral relevance of ultrafast movement, and the scaling of ultrafast movement. Here, we examined the development of the spring-latch mechanism in the bigclaw snapping shrimp, Alpheus heterochaelis (Alpheidae). Adult snapping shrimp use an enlarged claw to produce high-speed strikes that generate cavitation bubbles. However, until now, it was unclear when the elastic mechanism emerges during development and whether juvenile snapping shrimp can generate cavitation at this size. We reared A. heterochaelis from eggs, through their larval and postlarval stages. Starting 1 month after hatching, the snapping shrimp snapping claw gradually developed a spring-actuated mechanism and began snapping. We used high-speed videography (300,000 frames s−1) to measure juvenile snaps. We discovered that juvenile snapping shrimp generate the highest recorded accelerations (5.8×105±3.3×105 m s−2) for repeated-use, underwater motion and are capable of producing cavitation at the millimeter scale. The angular velocity of snaps did not change as juveniles grew; however, juvenile snapping shrimp with larger claws produced faster linear speeds and generated larger, longer-lasting cavitation bubbles. These findings establish the development of the elastic mechanism and cavitation in snapping shrimp and provide insights into early life-history transitions in spring-actuated mechanisms. 
    more » « less
  4. ABSTRACT Latch-mediated spring actuation (LaMSA) is used by small organisms to produce high acceleration movements. Mathematical models predict that acceleration increases as LaMSA systems decrease in size. Adult mantis shrimp use a LaMSA mechanism in their raptorial appendages to produce extremely fast strikes. Until now, however, it was unclear whether mantis shrimp at earlier life-history stages also strike using elastic recoil and latch mediation. We tested whether larval mantis shrimp (Gonodactylaceus falcatus) use LaMSA and, because of their smaller size, achieve higher strike accelerations than adults of other mantis shrimp species. Based on microscopy and kinematic analyses, we discovered that larval G. falcatus possess the components of, and actively use, LaMSA during their fourth larval stage, which is the stage of development when larvae begin feeding. Larvae performed strikes at high acceleration and speed (mean: 4.133×105 rad s−2, 292.7 rad s−1; 12 individuals, 25 strikes), which are of the same order of magnitude as for adults – even though adult appendages are up to two orders of magnitude longer. Larval strike speed (mean: 0.385 m s−1) exceeded the maximum swimming speed of similarly sized organisms from other species by several orders of magnitude. These findings establish the developmental timing and scaling of the mantis shrimp LaMSA mechanism and provide insights into the kinematic consequences of scaling limits in tiny elastic mechanisms. 
    more » « less